The Geometry of the Unit Disk

1. The Bergman metric on unit disk

\newcommand{\abs}[1]{\left| #1 \right|}

1.1 Schwarz’s lemma

Lemma 1.1. If f(z)Hol(D)f(z) \in Hol(\mathbb{D}), and f(0)=0f(0) = 0, then

f(z)z,andf(0)1.\left| f(z) \right| \le |z|, and |f'(0)| \le 1.

Equality holds at some point zz if and only if f(z)=eiγzf(z) = e^{i \gamma} z, where γ\gamma is a real constant.

We shall use the invariant form of Schwarz’s lemma. A Mo¨bius transformationM\ddot{o}bius\ transformation is a conformal self-map of the unit disk. Every Mo¨bius\text M\ddot{\text{o}}\text{bius} transformation can be written as with γ\gamma real and z00|z_0| \le 0.

Lemma 1.2. If fHol(D)f \in Hol(\mathbb{D})​, then

f(z)f(z0)1f(z0)f(z)zz01z0z,zz0,\frac{|f(z) - f(z_0)|}{|1 - \overline{f(z_0)} f(z)|} \le \left|\frac{z - z_0}{1 - \overline{z_0}z}\right|, \quad z \neq z_0,

and

f(z)1f(z)211z2.\frac{|f'(z)|}{1 - \left| f(z) \right|^2} \le \frac{1}{1 - |z|^2}.

Equality holds at some point zz if and only if f(z)f(z) is a Mo¨bius\text M\ddot{\text{o}}\text{bius} transformation.

Definition: If we define the standard Mo¨bius\text M\ddot{\text{o}}\text{bius} transform on D\mathbb{D}​ by

φw(z)=wz1zw.\varphi_{w} (z) = \frac{w-z}{1-z\overline{w}}.

The pseudo-hyperbolic distance on D\mathbb{D}​ is defined by

ρ(z,w)=φz(w)=zw1zw.\rho(z,w) = |\varphi_z(w)| = \left|\frac{z-w}{1 - \overline{z}w}\right|.

The Schwartz’s lemma says that analytic mappings from D\mathbb{D} to D\mathbb{D} are Lipschitz continuous in the pseudo-hyperbolic distance:

The lemma also says that the distance ρ(z,w)\rho(z,w) is invariant under Mo¨bius\text M\ddot{\text{o}}\text{bius} transformations:

for all z,wDz, w \in \mathbb{D}.

A useful identity:

1φz(w)2=1zw1zw2=(1z2)(1w2)1zw.1 - |\varphi_z(w)|^2 = 1 - \left|\frac{z-w}{1-\overline{z}w}\right| ^2 = \frac{(1-|z|^2)(1-|w|^2)}{|{1 - \overline{z}w}|}.

For any zDz \in \mathbb{D} and r(0,1)r \in (0,1)​, let

Δ(z,r)={wD:ρ(w,z)<r}\Delta(z,r) = \{w \in \mathbb{D}: \rho(w,z) < r\}

be the pseudo-hyperbolic disk with “center” zz and “radius” rr. Δ(z,r)\Delta(z,r) is the image of the Euclidean disk ξ<r|\xi| < r under the Mo¨bius\text M\ddot{\text{o}}\text{bius} transformation w=φz(ξ)w = \varphi_{z}(\xi). It follows that Δ(z,r)\Delta(z,r) is actually a Euclidean disk contained in D\mathbb{D}. The Euclidean center and radius of Δ(z,r)\Delta(z,r) are

1.2 The Bergman metric

The Bergman metric on D\mathbb{D}, also called the hyperbolic metric or the Poincareˊ\text{Poincar\'e} metric, is given by H(z)ds\sqrt{H(z)}ds, where dsds is the Euclidean length element and

The induced distance on D\mathbb{D}​ is given by

β(z,w)=12log(1+φz(w)1φz(w)),z,wD.\beta(z,w) = \frac{1}{2}\log \left(\frac{1+|\varphi_{z}(w)|}{1 - |\varphi_{z}(w)|}\right), \quad z, w \in \mathbb{D}.

Remark: The arc tangent hyperbolic function has the form Hence, the Bergman metric can be written by β(z,w)=tanh1(φz(w))\beta(z,w) = \tanh^{-1}(|\varphi_z(w)|).

In particular,

The Bergman metric is also Mo¨bius\text M\ddot{\text{o}}\text{bius} invariant: for all φ\varphi in Aut(D)\text{Aut}({\mathbb{D}}), and z,wDz, w \in \mathbb{D}.

Lemma 1.3. For any zDz \in \mathbb{D} and r>0r > 0, let be the Bergman metric disk with ’center’ zz and ’radius’ rr. D(z,r)D(z,r) is a Euclidean disk with Euclidean center and radius respectively, where

For any r>0r > 0 and zDz\in \mathbb{D}, we have the following equalities:

  1. D(z,r)=(1z2)2s2(1z2s2)2|D(z,r)| = \frac{(1 - |z|^2)^2 s^2}{(1 - |z|^2 s^2)^2};

  2. inf{kz(w)2:wD(z,r)}=(1sz)4(1z2)2;\inf \{|k_z(w)|^2: w \in D(z,r)\} = \frac{(1 - s|z|)^4}{(1-|z|^2)^2};

  3. sup{kz(w)2:wD(z,r)}=(1+sz)4(1z2)2;\sup \{|k_z(w)|^2: w \in D(z,r)\} = \frac{(1 + s|z|)^4}{(1-|z|^2)^2};

where s=tanhr(0,1)s = \tanh r \in (0,1), and D(z,r)|D(z,r)| is the (normalized) area of D(z,r)D(z,r).

Proof. (1) follows from the fact that D(z,r)D(z,r) is a Euclidean disk with Euclidean radius R=s(1z2)/(1z2s2)R = s(1 - |z|^2) / (1 - |z|^2 s^2).

(2) We just calculate:

inf{kz(w)2:wD(z,r)}=inf{kz(w)2:wφz(D(0,r))}=inf{Kz(φz(w))2:wD(0,r)}=inf{1zw4(1z2)2:wD(0,r)}=(1sz2)4(1z2)2.\begin{aligned} \inf \{|k_z(w)|^2 : w \in D(z,r)\} &= \inf \{|k_{z|(w)}^2: w \in \varphi_z (D(0,r))\} \\ &= \inf \{|K_z(\varphi_z(w))|^2: w \in D(0,r)\} \\ &= \inf \left\{ \frac{|1 - z \overline{w|}^4}{(1 - |z|^2)^2}: w \in D(0,r) \right\} \\ &= \frac{(1 - s|z|^2)^4}{(1 - |z|^2)^2}. \end{aligned}

The last equality follows from the fact that D(0,r)=B(0,s)D(0,r) = B(0,s), where B(0,s)B(0,s) is the Euclidean disk with center 00, and radius s=tanhrs = \tanh r​.

(3) is similar with (2). ◻

Corollary 1.1. For any r1,r2,r3>0r_1, r_2, r_3 > 0, there exists a constant C>0C> 0​ such that

1CD(z,r1)D(w,r2)C\frac{1}{C} \le \frac{|D(z,r_1)|}{|D(w,r_2)|} \le C

for all β(z,w)r3\beta(z,w) \le r_3.

Lemma 1.4. For any positive number RR, there exists a constant C>0C > 0 such that

1CD(z,r)D(w,r)C\frac{1}{C} \le \frac{|D(z,r)|}{|D(w,r)|} \le C

for all β(z,w)R\beta(z, w) \le R and rRr \le R​.

Proof. By lemma 1.3, we have

D(z,r)D(w,r)=(1z2)2s2(1z2s2)2(1w2s2)2(1w2)2s2=(1z2)2(1w2)2(1w2s2)2(1z2s2)2.\frac{|D(z,r)|}{|D(w,r)|} = \frac{(1 - |z|^2)^2 s^2}{(1 - |z|^2s^2)^2} \cdot \frac{(1 - |w|^2s^2)^2}{(1 - |w|^2)^2 s^2} = \frac{(1 - |z|^2)^2}{(1 - |w|^2)^2} \cdot \frac{(1 - |w|^2s^2)^2}{(1 - |z|^2 s^2)^2}.

Note that, tanh(r)\tanh(r) is a monotone-increasing function. Hence, let S=tanhRS = \tanh R​, we have

(1S2)2(1w2s2)2(1z2s2)21(1S2)2.(1 - S^2)^2 \le \frac{(1 - |w|^2 s^2)^2}{(1 - |z|^2s^2)^2} \le \frac{1}{(1 - S^2)^2}.

Thus, we only need to show there exists a constant C>0C > 0 such that

1C1z21w2C\frac{1}{C} \le \frac{1 - |z|^2}{1 - |w|^2} \le C

for all β(z,w)R\beta(z, w) \le R.

If β(z,w)R\beta(z, w) \le R, then we have ρ(z,w)=φz(w)S\rho(z,w) = |\varphi_z(w)| \le S, let w=φz(a)w = \varphi_z(a), we have a=φz(w)a = \varphi_z(w), which implies aS|a| \le S and

1w2=1φz(a)2=(1a2)(1z2)1za2.1 - |w|^2 = 1 - |\varphi_z(a)|^2 = \frac{(1 - |a|^2)(1 - |z|^2)}{|1 - z\overline{a|}^2}.

Since, 1S21a2<11 - S^2 \le 1 - |a|^2 < 1 and 1S1az21 - S \le |1 - \overline{a|z} \le 2​, thus, we have

1S221a21za2=1w21z211S.\frac{1-S^2}{2} \le \frac{1 - |a|^2}{|1 - z\overline{a|}^2} = \frac{1 - |w|^2}{1 - |z|^2} \le \frac{1}{1 - S}.

By (1) of Lemma 1.3, D(z,r1)|D(z,r_1)| and D(z,r2)|D(z,r_2)| are comparable (with an absolute constant) if r1r_1 and r2r_2 are comparable and bounded above. Thus we have the following generalization of the above lemma.

Corollary 1.2. For any R1,R2>0R_1, R_2 > 0, there exists a constant C>0C > 0​ such that

1CD(z,r1)D(w,r2)C\frac{1}{C} \le \frac{|D(z,r_1)|}{|D(w,r_2)|} \le C

for all r1,r2,r3R1r_1, r_2, r_3 \le R_1, R11r1/r2R2R_1^{-1} \le r_1 / r_2 \le R_2, and β(z,w)r3\beta(z,w) \le r_3.

Lemma 1.5. (Covering lemma) There exists a positive integer NN such that any Bergman metric disk of radius r(1)r(\le 1) can be covered by NN Bergman metric disk of radius r2\frac{r}{2}.

Proof. Fix D(a,r)D(a,r) and let D(z1,r2),,D(zn,r2)D(z_1, \frac{r}{2}), \cdots, D(z_n, \frac{r}{2}) be a cover of D(a,r)D(a,r) such that β(zi,zj)r4\beta(z_i, z_j) \ge \frac{r}{4} for all iji \neq j and D(zi,r8)D(a,r)D(z_i, \frac{r}{8}) \subset D(a,r) for all ii.

We claim that D(zi,r8)D(z_i, \frac{r}{8}) are pairwise disjoint since β(zi,zj)r4\beta(z_i, z_j) \ge \frac{r}{4}. Thus By the corollary (1.2), there is a constant C>0C > 0 independent of r(1)r(\le 1) such that D(a,r)CD(zi,r8)|D(a,r)| \le C |D(z_i, \frac{r}{8})| for all 1in1 \le i \le n. This implies that nCn \le C and hence taking N=[C]+1N = [C]+1 will finish the proof. ◻

Remark: Note that the restriction r1r \le 1 in the statement of the above lemma can be replaced by rRr \le R for any fixed positive number RR. Mimicking the proof of the above lemma, we can prove the following generalization:

Corollary 1.3. Given a positive integer nn, there is another positive integer NN such that any Bergman metric disk of radius r(1)r(\le 1) can be covered by NN Bergman metric disk of radius rn\frac{r}{n}.

Lemma 1.6. There is a positive number NN such that for any r1r \le 1, there exists a sequence {λn}\{\lambda_n\} in D\mathbb{D} satisfying the following conditions:

  1. D=n=1+D(λn,r)\mathbb{D} = \bigcup_{n = 1}^{+\infty} D(\lambda_n,r);

  2. D(λn,r4)D(λm,r4)=D(\lambda_n, \frac{r}{4}) \cap D(\lambda_m, \frac{r}{4}) = \emptyset if mnm \neq n;

  3. Any point in D\mathbb{D} belongs to at most NN of the sets D(λn,2r)D(\lambda_n, 2r).

Proof. We can find a sequence {λn}\{\lambda_n\} such that D=n=1+D(λn,r)\mathbb{D} = \bigcup_{n = 1}^{+ \infty} D(\lambda_n, r) and β(λn,λm)r2\beta(\lambda_n, \lambda_m) \ge \frac{r}{2} for all mnm \neq n. Now (2) follows immediately from the triangle inequality. We show that (3) has to hold.

Let NN be a positive integer such that any Bergman metric disk of radius 2r2r can be covered by NN Bergman metric disk of radius r4\frac{r}{4}. If z{D(λni,2r):1iN+1}z \in \bigcap\{ D(\lambda_{n_i}, 2r): 1 \le i \le N+1\}, then λniD(z,2r)\lambda_{n_i} \in D(z,2r) for all 1iN+11\le i \le N+1. Let {D(wj,r4):1jN}\{D(w_j, \frac{r}{4}):1 \le j \le N\} be a cover of D(z,2r)D(z,2r), then at least one D(wj,r4)D(w_j,\frac{r}{4}) between these two λni\lambda_{n_i}’s is less than r2\frac{r}{2}, which is a contracdiction. ◻

Generally covering lemma: Let r1r \le 1 and {D(λn,r)}\{D(\lambda_n, r)\} be a cover of D\mathbb{D} satisfying the conditions of Lemma (1.6). For each nn we can find a measurable set DnD_n with the following properties:

  1. D(λn,r4)DnD(λn,r)D(\lambda_n,\frac{r}{4}) \subset D_n \subset D(\lambda_n,r) for all n1n \ge 1;

  2. DmDn=D_m \cap D_n = \emptyset if nmn \neq m;

  3. n=1+Dn=D\bigcup_{n = 1}^{+\infty} D_n = \mathbb{D}.

This disjoint decomposition {Dn}\{D_n\} of D\mathbb{D} will play an important role in the atomic decomposition of functions in the Bergman spaces.

Proposition 1.1. There is a constant C>0C > 0 such that

f(z)pCD(z,r)D(z,r)f(w)pdA(w)\left| f(z) \right|^p \le \frac{C}{|D(z,r)|} \int_{D(z,r)} |f(w)|^p d A(w)

for all ff analytic, zD,p>0z \in \mathbb{D}, p > 0 and r1r \le 1.

Proof. Since D(0,r)D(0,r) is a Euclidean disk with Euclidean center 00, and f(z)p\left| f(z) \right|^p is subharmonic for all analytic ff and p>0p > 0, we have

f(0)p1D(0,r)D(0,r)f(w)pdA(w)=1s2D(0,r)f(w)pdA(w),|f(0)|^p \le \frac{1}{|D(0,r)|} \int_{D(0,r)} |f(w)|^p dA(w) = \frac{1}{s^2} \int_{D(0,r)} |f(w)|^p dA(w),

where s=tanhr(0,1)s = \tanh r \in (0,1). Replace ff by fφzf\circ \varphi_{z} and make a change of variable, we have

f(z)p1s2D(z,r)f(w)pkz(w)2dA(w).\left| f(z) \right|^p \le \frac{1}{s^2} \int_{D(z,r)} |f(w)|^p |k_z(w)|^2 dA(w).

By (3) of lemma (1.3), we have

f(z)p(1s2z2)4s2(1z2)2D(z,r)f(w)pdA(w).\left| f(z) \right|^p \le \frac{(1 - s^2 |z|^2)^4}{s^2(1 - |z|^2)^2} \int_{D(z,r)} |f(w)|^p dA(w).

Since r1r \le 1 implies that stanh1(0,1)s \le \tanh 1 \in (0,1), (1) of lemma (1.3) implies that there is a constant CC such that

f(z)pCD(z,r)D(z,r)f(w)pdA(w)\left| f(z) \right|^p \le \frac{C}{|D(z,r)|} \int_{D(z,r)} |f(w)|^p dA(w)

for all ff analytic, zDz \in \mathbb{D}, p>0p > 0, and r1r \le 1​​. ◻

Atomic decoposition

Recall that kz(w)=(1z2)/(1zw)2k_z(w) = (1 - |z|^2)/(1 - \overline{z}w)^2 are the normalized reproducing kernels of the Bergman space La2L_a^2. They are uint vectors in La2L_a^2. The purpose of this section is to show that these normalized reproducing kernels are the right building blocks for La2L_a^2, although they are clearly not mutually orthogonal. The same idea will be generalized to all the Bergman spaces LapL_a^p.

Total hypothesis: For any 0<r10 < r \le 1, we will fix a sequence {λn}\{\lambda_n\} in D\mathbb{D} with the properties:

  1. D=n=1+D(λn,r)\mathbb{D} = \bigcup_{n = 1}^{+\infty} D(\lambda_n,r);

  2. D(λn,r4)D(λm,r4)=D(\lambda_n, \frac{r}{4}) \cap D(\lambda_m, \frac{r}{4}) = \emptyset if mnm \neq n;

  3. Any point in D\mathbb{D} belongs to at most NN of the sets D(λn,2r)D(\lambda_n, 2r).

The existence is supported by lemma (1.6). We also fix a disjoint decomposition of D\mathbb{D} satisfying:

  1. D(λn,r4)DnD(λn,r)D(\lambda_n,\frac{r}{4}) \subset D_n \subset D(\lambda_n,r) for all n1n \ge 1;

  2. DmDn=D_m \cap D_n = \emptyset if nmn \neq m;

  3. n=1+Dn=D\bigcup_{n = 1}^{+\infty} D_n = \mathbb{D}.

Lemma 1.7. For any r>0r > 0, there is a constant C>0C > 0 (depending on rr) such that

n=1+(1λn2)2f(λn)pCDf(z)pdA(z)\sum_{n = 1}^{+ \infty} (1 - |\lambda_n|^2)^2 |f(\lambda_n)|^p \le C \int_{\mathbb{D}} \left| f(z) \right|^p dA(z)

for all analytic ff and p1p \ge 1.

2. Dyadic structure of the unit disk

2.1 A dyadic structure of “kubes” on D\mathbb{D}

If we fix the parameters θ0,λ0>0\theta_{0}, \lambda_0 > 0. For kNk \in \mathbb{N}, let Skθ0:={zD:β(0,z)=kθ0}\mathbb{S}_{k \theta_0} := \{z \in \mathbb{D} : \beta (0,z) = k\theta_0 \}.

For each kNk \in \mathbb{N}, there exist points {wjk}j=1JkD\{w_j^k\}_{j = 1}^{J_k} \subset \mathbb{D} corresponding to Borel sets QjkTkθ0Q_j^k \subset \mathbb{T}_{k\theta_0} containing wjkw_j^k, and a constant C>0C > 0 such that

  1. Tkθ0=j=1JkQjk,\mathbb{T}_{k\theta_0} = \bigcup_{j=1}^{J_k} Q_j^k,

  2. QjkQjk=Q_j^k \cap Q_{j'}^k = \emptyset whenever jjj \neq j', and

  3. Tkθ0D(wjk,λ0)QjkTkθ0D(wjk,Cλ0)\mathbb{T}_{k\theta_0} \cap D(w_j^k, \lambda_0)\subset Q_j^k \subset \mathbb{T}_{k\theta_0}\cap D(w_j^k,C\lambda_0).

For zDz \in \mathbb{D}, let Pkθ0zP_{k\theta_0}z be the projection of zz onto Tkθ0\mathbb{T}_{k\theta_0}. Define and for kNk \in \mathbb{N}, j{1,2,,Jk}j \in \{1, 2, \cdots, J_k\}

Kjk:={zD:kθ0<β(0,z)(k+1)θ0 and Pkθ0zQjk}.K_j^k := \{z \in \mathbb{D} : k\theta_0 < \beta(0,z) \le (k+1)\theta_0 \text{ and } P_{k\theta_0} z \in Q_j^k\}.

For each kNk\in \mathbb{N}, j{1,2,,Jk}j \in \{1, 2, \cdots, J_k\}, KjkK_j^k​ is called a kube. We can see these in the following figure:

K_j^w

The diagram of Tkθ0,Qjk,wjk\mathbb{T}_{k\theta_0}, Q_j^k, w_j^k and the kube KjkK_j^k

We denote the collection of kubes KjkK_j^k obtained in this construction by D0\mathcal{D}_0. In what follows, we often drop the subscript and superscript labeling a kube if they are not necessary for clarity.

Fact: From the figure 1 and the definition of KK, the kubes in D0\mathcal{D}_0 is a partition of D\mathbb{D}.

Given a kube K=KjkD0K = K_j^k \in \mathcal{D}_0, we define its center by cK=cjk:=P(k+12)θ0wjkc_K = c_j^k := P_{(k+ \frac{1}{2})\theta_0}w_j^k. Also, for K=KjkK = K_j^k, we call kk the generation of KK and denote this by d(K)d(K).

We define a tree structure on D0\mathcal{D}_0 in the following way.

  1. For k1k \ge 1, we say a kube Kj1k+1K_{j_1}^{k+1} is a child of Kj2kK_{j_2}^k if Pkθ0cj1k+1Qj2kP_{k\theta_0}c_{j_1}^{k+1} \in Q_{j_2}^k and we declare every kube in {Kj1}j=1J1\{K_j^1\}_{j = 1}^{J_1} to be a child of K10K_1^0.

  2. More generally, we say Kj1k1K_{j_1}^{k_1} is a descendant of Kj2k2K_{j_2}^{k_2} and write Kj1k1Kj2k2K_{j_1}^{k_1} \prec K_{j_2}^{k_2} if k1>k2k_1 > k_2 and Pk2θ0cj1k1Qj2k2P_{k_2\theta_0}c_{j_1}^{k_1} \in Q_{j_2}^{k_2}. We denote the collection of children of KD0K \in \mathcal{D}_0 by ch(K)\text{ch}(K) and define D(K)={K}{KD0:KK}\mathcal{D}(K) = \{K\} \cup \{ K'\in \mathcal{D}_0 : K' \prec K\}.

  3. Given a fixed kube KD0K \in \mathcal{D}_0, we define the dyadic tent over the kube, K^\widehat{K}, to be the following set:

Notice that by construction, given two tents K^\widehat{K} and K^\widehat{K'} associated to Kubes in D0\mathcal{D}_0​, either the two sets are disjoint or one is contained in the other. Here is an example:

The_relations_of_K_j^k

The diagram of The relations of KjkK_j^k.

Lemma 2.1. Let t>1t> -1 and let D0\mathcal{D}_0 be a dyadic structure withe positive parameters λ0\lambda_0 and θ0\theta_0. Then it satisfies the following properties:

  1. D=KD0K\mathbb{D} = \bigcup_{K \in \mathcal{D}_0} K and the kubes KjkK_j^k are pairwise disjoint. Furthermore, there are constants, C1C_1 and C2C_2 depending on λ0\lambda_0 and θ0\theta_0 such that for all KD0K \in \mathcal{D}_0 there holds:

  2. At(K)At(K^)At(Tz)(1cK2)1+tA_{t}(K) \asymp A_t(\widehat{K}) \asymp A_t(\mathcal{T}_z) \asymp (1 - |c_K|^2)^{1+t}, where dAt(z)=(1z2)tdA(z)dA_t(z) = (1 - |z|^2)^t dA(z).

  3. Every element of D0\mathcal{D}_0 has at most e2kθ0e^{2k\theta_0} children.

Lemma 2.2. We have for any KD0K \in \mathcal{D}_0. We explicitly write where ρ0(0,1)\rho_0 \in (0,1), and therefore

Lemma 2.3. There exists α0>1\alpha_0 > 1 such that if KD0K \in \mathcal{D}_0 and Kch(K)K' \in \text{ch}(K), then

Proof. Note that by definition, for any kube KD0K \in \mathcal{D}_0 with d(K)=kd(K) = k, we have

β(0,cK)=12log(1+cK1cK)=(k+12)θ0.\beta(0,c_K) = \frac{1}{2}\log \left( \frac{1+|c_K|}{1 - |c_K|}\right) = \left(k + \frac{1}{2}\right)\theta_0.

We thus obtain

cK=e2(k+12)θ01e2(k+12)θ0+1.|c_K| = \frac{e^{2(k + \frac{1}{2})\theta_0} - 1}{e^{2(k+\frac{1}{2})\theta_0} + 1}.

Lemma 2.4. If we define Tz={wD:1wzz<1z}\mathcal{T}_z = \{w \in \mathbb{D}: |1 - \overline{w}\frac{z}{|z|}| < 1 - |z| \}. Then there exists a finite collection of dyadic structures {D}=1M\{\mathcal{D}_{\ell}\}_{\ell = 1}^{M} such that for any zDz \in \mathbb{D}, there exists K=1MDK \in \bigcup_{\ell = 1}^{M} \mathcal{D}_{\ell} such that K^Tz\widehat{K} \supset \mathcal{T}_{z} and K^Tz|\widehat{K|} \asymp |\mathcal{T|_{z}}. Moreover, for any K=1MDK' \in \bigcup_{\ell = 1}^{M} \mathcal{D}_{\ell}, there exists zDz' \in \mathbb{D} such that TzK^\mathcal{T}_{z'} \supset \widehat{K'} and TzK^|\mathcal{T|_{z'}} \asymp |\widehat{K'|}.