Geometry of Hilbert Spaces

Definition. If M\mathcal{M} is a subset of the Hilbert space H\mathscr{H}, then the orthogonal complement of M\mathcal{M}, denoted M\mathcal{M}^{\perp},is the set of vectors in H\mathscr{H} orthogonal every vector in M\mathcal{M}.

Remark. M\mathcal{M}^{\perp} is a closed subspaces of H\mathscr{H}.

Proof. Let xx,yy M\in \mathscr{M}^{\perp}, zM\forall z \in \mathcal{M}, <z,x>=<z,y>=0<{z},{x}> = <{z},{y}> = 0. Then,

<z,x+y>=<z,x>+<z,y>=0+0=0.<{z},{x+y}> = <{z},{x}> + <{z},{y}> = 0+0 = 0.

This implies x+yMx+y \in \mathscr{M}^{\perp}. And λC\forall \lambda \in \mathbb{C}, <λz,x>=0<{\lambda z},{x}> = 0, then λzM\lambda z \in \mathscr{M}^{\perp}. Hence, M\mathscr{M}^{\perp} is a subspace of H\mathscr{H}.

Next, we only need to show M\mathscr{M}^{\perp} is closed. For xMx \in \mathcal{M}, we can define a linear functional φx(z):=<z,x>\varphi_x(z) := <{z},{x}>, themM=xMKerφx\mathscr{M}^{\perp} = \bigcap_{x \in \mathcal{M}} \textbf{Ker}{\varphi_{x}} is a closed subset of H\mathscr{H}. ◻

Theorem. If M\mathcal{M} is a closed subspace of the Hilbert space H\mathscr{H} and fHf \in \mathscr{H}, then there exist unique vectors gMg \in \mathcal{M} and hMh \in \mathscr{M}^{\perp} such that

f=g+h.f = g + h.

Proof. Set K={fk:kM}\mathscr{K} = \{f - k: k \in \mathcal{M}\}, then K\mathscr{K} is a nonempty, closed and convex subset of H\mathscr{H}.
Hence, there exists the unique element hKh \in \mathscr{K} with the smallest norm. Consider kMk \in \mathcal{M}, then h<h,k>kKh - <{h},{k}>k \in \mathscr{K}, and hence

h2h<h,k>k2=h2<h,k><h,k><h,k><h,k>+<h,k><h,k>k2.\begin{aligned} {\|{h}\|}^2 &\le {\|{h - <{h},{k}>k}{}\|}^2 \\ &= \|{h}{}\|^2 - \overline{<{h},{k}>} <{h},{k}> - <{h},{k}>\overline{<{h},{k}>} + <{h},{k}>\overline{<{h},{k}>}{\|{k}{}\|}^2. \end{aligned}

Therefore, we have <h,k>20|{<{h},{k}>}|^2 \le 0, which implies <h,k>=0<{h},{k}> = 0, hMh\in \mathscr{M}^{\perp}. Since hKh \in \mathscr{K}, then gM\exists g \in \mathcal{M}, such that f=g+hf = g+h.

Uniqueness: If f=g1+h1=g2+h2f = g_1 + h_1 = g_2 + h_2, with g1,g2Mg_1, g_2 \in \mathcal{M}, and h1,h2Mh_1, h_2 \in \mathscr{M}^{\perp}. Then g1g2=h1h2MMg_1 - g_2 = h_1 - h_2 \in \mathcal{M} \bigcap \mathscr{M}^{\perp}. This means that (g1g2)(g1g2)(g_1 - g_2) \perp (g_1 - g_2), and (h1h2)(h1h2)(h_1 - h_2) \perp (h_1 - h_2). <g1g2,g1g2>=<h1h2,h1h2>=g1g22=h1h22=0.<{g_1 - g_2},{g_1 - g_2}> = <{h_1 - h_2}, {h_1 - h_2}> = \|{g_1 - g_2}{}\|^2 = \|{h_1 - h_2}{}\|^2 = 0.
Then g1=g2g_1 = g_2 and h1=h2h_1 = h_2. ◻

Corollory. If M\mathcal{M} is a subspace of the Hilbert space H\mathscr{H}, then M=M\mathcal{M}^{\perp \perp} = \overline{\mathcal{M}}.

Proof. Obvious that MM\mathcal{M} \subset \mathcal{M}^{\perp \perp}(By definition of M\mathscr{M}^{\perp}). Hence, MM\overline{\mathcal{M}} \subset \mathcal{M}^{\perp \perp}.
IffMf \in \mathcal{M}^{\perp \perp}, then f=g+hf = g + h, where gMg \in \overline{\mathcal{M}}, and hMh \in \mathscr{M}^{\perp}. Since fMf \in \mathcal{M}^{\perp \perp}, we have

0=<f,h>=<g+h,h>=<h,h>=h2.0 = <{f},{h}> = <{g+h},{h}> = <{h},{h}> = \|{h}{}\|^2.

Therefore, h=0h = 0, hence, fMf \in \overline{M}. ◻

Theorem. If φ\varphi is a bounded linear functional on H\mathscr{H}, then there
exists a unique gHg \in \mathscr{H} such that φ(f)=<f,g>\varphi(f) = <{f},{g}> for fHf \in \mathscr{H}.

Proof. Let K=Kerφ={fH:φ(f)=0}\mathscr{K} = \textbf{Ker} \varphi = \{f \in \mathscr{H} : \varphi(f) = 0\}. Since φ\varphi is continuous, K\mathscr{K} is a closed subspace of H\mathscr{H}. If K=H\mathscr{K} = \mathscr{H}, then φ(f)=<f,0>\varphi(f) = <{f},{0}>, fH\forall f \in \mathscr{H}.

If KH\mathscr{K} \subsetneq \mathscr{H}, then hK\exists h \in \mathscr{K}^{\perp} with h=1\|{h}{}\| = 1. Since hKh \notin \mathscr{K}, then φ(h)0\varphi(h) \neq 0.

Since

φ(fφ(f)φ(h)h)=φ(f)φ(f)φ(h)φ(h)=0,fH.\varphi(f - \frac{\varphi(f)}{\varphi(h)} h) = \varphi(f) - \frac{\varphi(f)}{\varphi(h)}\varphi(h) = 0, \quad \forall f \in \mathscr{H}.

Then fH\forall f \in \mathscr{H}, fφ(f)φ(h)hKf - \frac{\varphi(f)}{\varphi(h)} h \in \mathscr{K}. Therefore, for
fHf\in \mathscr{H}, we have

φ(f)=φ(f)<h,h>=<φ(f)φ(h)h,φ(h)h>=<φ(f)φ(h)h,φ(h)h>+<fφ(f)φ(h)h,φ(h)h>=<f,φ(h)h>.\begin{aligned} \varphi(f) &= \varphi(f)<{h},{h}> = <{\frac{\varphi(f)}{\varphi(h)} h },{\overline{\varphi(h)} h }> \\ &= <{\frac{\varphi(f)}{\varphi(h)} h },{\overline{\varphi(h)} h }> + <{f - \frac{\varphi(f)}{\varphi(h)} h},{\overline{\varphi(h)} h}> \\ &= <{f},{\overline{\varphi(h)}h}>. \end{aligned}

Uniqueness: If <f,g1>=<f,g2><{f},{g_1}> = <{f},{g_2}>
fH\forall f \in \mathscr{H}, then <g1g2,g1g2>=0<{g_1 - g_2},{g_1 - g_2}> = 0,
g1=g2g_1 = g_2. ◻

Theorem. If {fα}αΛ\{f_{\alpha}\}_{\alpha \in \Lambda} is an orthogonal subset of Hilbert space H\mathscr{H}, then αΛfα\sum_{\alpha \in \Lambda} f_{\alpha} converges if and only if αΛfα2<+\sum_{\alpha \in \Lambda} \|{f_{\alpha}}{}\|^2 < +\infty. And in this case, we have

αΛfα2=αΛfα2.\|{\sum_{\alpha \in \Lambda} f_{\alpha}}{}\|^2 = \sum_{\alpha \in \Lambda}\|{f_{\alpha}}{}\|^2.

Back to the definition of arbitrary sum:

Definition. Let {fα}αA\{f_{\alpha}\}_{\alpha \in A} be a set of vectors in the Banache space XX. Let F={FA:F is finite}\mathscr{F} = \{F \subset A : F \text{ is finite}\}. If we define F1F2F_1 \le F_2 for F1F2F_1 \subset F_2, then F\mathscr{F} is a directed set(also means the partial ordered set). For each FFF \in \mathscr{F}, let gF=αFfαg_F = \sum_{\alpha \in F} f_{\alpha}. If the net {gF}FF\{g_F\}_{F \in \mathscr{F}} converges to some gg in XX, then the sum αAfα\sum_{\alpha \in A} f_{\alpha} is said to converge and we write g=αAfαg = \sum_{\alpha \in A}f_{\alpha}.

Proof. Consider a finite subset FΛF \subset \Lambda, then, we have

αFfα2=αFfα2.\|{\sum_{\alpha \in F} f_{\alpha}}{}\|^2 = \sum_{\alpha \in F} \|{f_{\alpha}}{}\|^2.

Let F\mathscr{F} denote the collection of finite subsets of Λ\Lambda. If αΛfα\sum_{\alpha \in \Lambda} f_{\alpha} converges, then

αΛfα2=limFFαFfα2=limFFαFfα2=limFFαFfα2=αΛfα2.\begin{aligned} \|{\sum_{\alpha \in \Lambda} f_{\alpha}}{}\|^2 &= \|{\lim_{F \in \mathscr{F}} \sum_{\alpha \in F} f_{\alpha}}{}\|^2 = \lim_{F \in \mathscr{F}} \|{\sum_{\alpha \in F} f_{\alpha}}{}\|^2 \\ &= \lim_{F \in \mathscr{F}}\sum_{\alpha \in F} \|{f_{\alpha}}{}\|^2 = \sum_{\alpha \in \Lambda} \|{f_{\alpha}}{}\|^2. \end{aligned}

Hence, if αΛfα\sum_{\alpha \in \Lambda} f_{\alpha} convergers, then αΛfα2<\sum_{\alpha \in \Lambda} \|{f_{\alpha}}{}\|^2 < \infty.

Conversely, if αΛfα2<\sum_{\alpha \in \Lambda} \|{f_{\alpha}}{}\|^2 < \infty. ε>0\forall \varepsilon > 0, F0F\exists F_0 \in \mathscr{F} such that FF0F \ge F_0 implies αFfα2αF0fα2<ε2\sum_{\alpha \in F} \|{f_{\alpha}}{}\|^2 - \sum_{\alpha \in F_0} \|{f_{\alpha}}{}\|^2 < \varepsilon^2.
Thus, for F1,F2FF_1,F_2 \in \mathscr{F} such that F1,F2F0F_1, F_2 \ge F_0, we have

αF1fααF2fα2=αF1\F2fα2+αF2\F1fα2αF1F2fα2αF0fα2<ε2.\begin{aligned} \|{\sum_{\alpha \in F_1} f_{\alpha} - \sum_{\alpha \in F_2} f_{\alpha}}{}\|^2 &= \sum_{\alpha \in F_1 \backslash F_2} \|{f_{\alpha}}{}\|^2 + \sum_{\alpha \in F_2 \backslash F_1 } \|{f_{\alpha}}{}\|^2 \\ &\le \sum_{\alpha \in F_1 \cup F_2} \|{f_{\alpha}}{}\|^2 - \sum_{\alpha \in F_0} \|{f_{\alpha}}{}\|^2 < \varepsilon^2. \end{aligned}

Hence, the net {αFfα}FF\{\sum_{\alpha \in F} f_{\alpha}\}_{F \in \mathscr{F}} is Cauchy in H\mathscr{H}, which is convergence. ◻

Corollary. If {eα}αA\{e_{\alpha}\}_{\alpha \in A} is an orthonormal subset of the Hilbert space H\mathscr{H} and M\mathcal{M} is the smallest closed subspace of H\mathscr{H} containing the set {eα:αA}\{e_{\alpha} : \alpha \in A\}, then

M={αAλαeα:λαC,αAλα2<}.\mathcal{M} = \left\{\sum_{\alpha \in A} \lambda_{\alpha} e_{\alpha }: \lambda_{\alpha} \in \mathbb{C} , \sum_{\alpha \in A} |{\lambda_{\alpha}}|^2 < \infty\right\}.

Proof. Let N={αAλαeα:λαC,αAλα2<}\mathcal{N} = \left\{\sum_{\alpha \in A} \lambda_{\alpha} e_{\alpha }: \lambda_{\alpha} \in \mathbb{C} , \sum_{\alpha \in A} |{\lambda_{\alpha}}|^2 < \infty\right\}. We have NM\mathcal{N} \subset \mathcal{M}.
Then, we only need to show N\mathcal{N} is a closed subspace of H\mathscr{H} containing the set {eα}αA\{e_{\alpha}\}_{\alpha \in A}.

Step 1. We prove that N\mathcal{N} is a closed subspace of H\mathscr{H} containing the set {eα:αA}\{e_{\alpha} : \alpha \in A\}.

Assume {λα}αA,{μα}αA\{\lambda_{\alpha}\}_{\alpha \in A}, \{\mu_{\alpha}\}_{\alpha \in A} satisfy αAλα2<\sum_{\alpha \in A} |{\lambda_{\alpha}}|^2 < \infty and αAμα2<\sum_{\alpha \in A } |{\mu_{\alpha}}|^2 < \infty, then

αAλα+μα2αA2(λα2+μα2)=2αAλα2+2αAμα2<.\begin{aligned} \sum_{\alpha \in A} |{\lambda_{\alpha}+ \mu_{\alpha}}|^2 &\le \sum_{\alpha \in A} 2(|{\lambda_{\alpha}}|^2 + |{\mu_{\alpha}}|^2)\\ &= 2\sum_{\alpha \in A} |{\lambda_{\alpha}}|^2 + 2 \sum_{\alpha \in A} |{\mu_{\alpha}}|^2 < \infty. \end{aligned}

This implies αAλαeα+αAμαeα=αA(λα+μα)eαN\sum_{\alpha \in A} \lambda_{\alpha}e_{\alpha} + \sum_{\alpha \in A} \mu_{\alpha}e_{\alpha} = \sum_{\alpha \in A}(\lambda_{\alpha} + \mu_{\alpha})e_{\alpha} \in \mathcal{N}. and it is easy to verify that αAaλαeαN\sum_{\alpha \in A} a \lambda_{\alpha}e_{\alpha} \in \mathcal{N} for all aCa \in \mathbb{C} and eαN,αAe_{\alpha} \in \mathcal{N}, \forall \alpha \in A.

Step 2. We prove that N\mathcal{N} is closed and NM\mathcal{N} \subset \mathcal{M}.

Note that N=2(A)\mathcal{N} = \ell^2(A) actually. Then N\mathcal{N} is closed. ◻

Definition. A subset {eα}αA\{e_{\alpha}\}_{\alpha \in A} of the Hilbert space H\mathscr{H} is said to be an orthonormal basis if it is orthonormal and the smallest closed subspace containing it is H\mathscr{H}.

Corollary. If {eα}αA\{e_{\alpha}\}_{\alpha \in A} is an orthonormal basis for the Hilbert space H\mathscr{H} and fHf \in \mathscr{H}, then there is a unique Fourier coefficients {λα}αA\{\lambda_{\alpha}\}_{\alpha \in A} contained in C\mathbb{C} such that f=αAλαeαf = \sum_{\alpha \in A} \lambda _{\alpha}e_{\alpha}. Moreover, λα=<f,eα>\lambda_{\alpha} = <{f},{e_{\alpha}}> for αA\alpha \in A.

Proof. By Corollary above we have

H={αAλαeα:λαC,αAλα2<}.\mathscr{H} = \left\{\sum_{\alpha \in A} \lambda_{\alpha} e_{\alpha} : \lambda_{\alpha} \in \mathbb{C}, \sum_{\alpha \in A} |{\lambda_{\alpha}}|^2 < \infty\right\}.

Hence, fH\forall f \in \mathscr{H}, there is {λα}\{\lambda_{\alpha}\}, with αAλα2<\sum_{\alpha \in A} |{\lambda_{\alpha}}|^2 < \infty, such that f=αAλαeαf = \sum_{\alpha \in A} \lambda_{\alpha}e_{\alpha}. Then, we only need to show the uniqueness.

If f=αAλαeα=αAμαeαf = \sum_{\alpha \in A} \lambda_{\alpha} e_{\alpha} = \sum_{\alpha \in A}\mu_{\alpha}e_{\alpha}. Then 0=αA(λαμα)eα0 = \sum_{\alpha \in A}(\lambda_{\alpha} - \mu_{\alpha})e_{\alpha}.
Hence for each βA\beta \in A,

Hence, λβ=μβ\lambda_{\beta} = \mu_{\beta}, βA\forall \beta \in A​.

Finally for each βA\beta \in A,

<f,eβ>=αAλα<eα,eβ>=λβ.<{f},{e_{\beta}}> = \sum_{\alpha \in A}\lambda_{\alpha}<{e_{\alpha}},{e_{\beta}}> = \lambda_{\beta}.

Theorem. Every Hilbert space({0}\neq \{0\}) possesses an orthonormal basis.

Proof. Since H{0}\mathscr{H} \neq \{0\}, then H\mathscr{H} has at least one orthonormal set. Assume, F\mathcal{F} denoted by the collection of all orthonormal subsets of H\mathscr{H}. And define the ordered on F\mathcal{F}, for F1,F2FF_1, F_2 \in \mathcal{F}, F1F2F_1 \le F_2 if F1F2F_1 \subset F_2. Then (F,)(\mathcal{F}, \le) is a partial ordered set.

Let A\mathcal{A} is a total ordered subset of F\mathcal{F}, let G=FAFG = \bigcup_{F \in \mathcal{A}}F.

We prove GG is an orthonormal subsets of H\mathscr{H}, hence it is an upper bound of A\mathcal{A}

f,gG\forall f, g \in G, there is F1,F2AF_1, F_2 \in \mathcal{A}, such that fF1f \in F_1 and gF2g \in F_2. Since, A\mathcal{A} is total ordered, then F1F2{F1,F2}=max{F1,F2}F_1 \bigcup F_2 \in \{F_1, F_2\} = \max\{F_1, F_2\}. W.L.A.G F1F2F_1 \le F_2, hence, f,gF2f, g \in F_2, and note that F2F_2 is an orthonormal subset, then fgf \perp g.

By Zorn’s lemma, there is a maximal element of F\mathcal{F}, denoted by B={eα:αA}B = \{e_{\alpha}: \alpha \in A\}.

Next, we prove BB is an orthonormal basis of H\mathscr{H}.

Let K=SpanB\mathscr{K} = \overline{\textbf{Span}}B, and if KH\mathscr{K} \subsetneq \mathscr{H}, choose xHKx \in \mathscr{H} \setminus \mathscr{K}.

Let h=xαA<x,eα>eαh = x - \sum_{\alpha \in A}<{x},{e_{\alpha}}>e_{\alpha}. Then, h0h \neq 0 and hKh \notin \mathscr{K} (Since <h,eβ>=0<{h},{e_{\beta}}> = 0 βA\forall \beta \in A).

Hence, let G~=G{h/h}\widetilde{G} = G\bigcup \{h/\|{h}{}\}, then G~\widetilde{G} is an orthonormal subsets of H\mathscr{H} containing GG, which contradicts with GG is maximal.

Thus, K=H\mathscr{K} = \mathscr{H}, GG is an orthonormal basis of H\mathscr{H}. ◻

Theorem. If {eα}αA\{e_{\alpha}\}_{\alpha \in A} and {fβ}βB\{f_{\beta}\}_{\beta \in B} are orthonormal basis for the Hilbert space H\mathscr{H}, then #A=#B\# A = \# B.

Proof. If #A<#B\# A < \#B, then, there is a injective map τ\tau from AA into a proper subset CC of BB.

Then, C={τ(eα)}αAC = \{\tau(e_{\alpha})\}_{\alpha \in A}, and CC is an orthonormal subset of H\mathscr{H}. Let K=SpanC\mathcal{K} = \overline{\textbf{Span} }C. Then, KH\mathcal{K} \subsetneq \mathscr{H}, and choose xHKx \in \mathscr{H} \setminus \mathcal{K}.

For each γA\gamma \in A,

τ(eγ)=αA<τ(eγ),eα>eα.\tau(e_{\gamma}) = \sum_{\alpha \in A} <{\tau(e_{\gamma})},{e_{\alpha}}>e_{\alpha}.

Then τ\tau can extend to a linear map on H\mathscr{H}. τ:HK\tau : \mathscr{H} \to \mathcal{K} is one-to-one and onto by define

τ(x)=γA<x,eγ>τ(eγ),xH.\tau(x) = \sum_{\gamma \in A}<{x},{e_{\gamma}}>\tau(e_{\gamma}), \quad \forall x \in \mathscr{H}.

τ\tau is continuous.

If the claim holds, we have τ1\tau^{-1} is continuous. Then SpanA=SpanC\overline{\textbf{Span}}A = \overline{\textbf{Span}}C, K=H\mathcal{K} = \mathscr{H}. This is contradiction!

Hence, #A#B\#A \ge \#B, by symmetry #B#A\#B \ge \#A. #A=#B\#A = \#B.

Finally, we prove the claim

Assume xHx \in \mathscr{H}, x=1\|{x}\| = 1. Then,

τ(x)2=γA<x,eγ>τ(eγ)2=γA<x,eγ>2=x2.\|{\tau(x)}{}\|^2 = \|{\sum_{\gamma \in A} <{x},{e_{\gamma}}> \tau(e_{\gamma})}{}\|^2 = \sum_{\gamma \in A}|{<{x},{e_{\gamma}}>}|^2 = \|{x}{}\|^2.

Hence, τ\tau is continuous. We complete the proof. ◻

Theorem. If H\mathscr{H} is a Hilbert space, then the dimension of H\mathscr{H}, denoted dimH\dim \mathscr{H}, is the cardinality of any orthonormal basis for H\mathscr{H}.

Theorem. Two Hilbert spaces are isomorphic if and only if their dimensions are equal.

Example. Cn\mathbb{C}^n with inner product z=(z1,z2,,zn)z = (z_1, z_2, \cdots, z_n), w=(w1,w2,,wn)Cnw = (w_1, w_2,\cdots, w_n) \in \mathbb{C}^n, then

<z,w>=k=1nzkwk.<{z},{w}> = \sum_{k=1}^{n}z_k \overline{w_k}.

and {ek=(0,,0,1,0,,0)}k=1n\{e_k = (0,\cdots, 0, 1, 0, \cdots, 0)\}_{k = 1}^{n} is the orthonormal basis of Cn\mathbb{C}^n. Then dimCn=n\dim \mathbb{C}^n = n.

Theorem. 2(Z+)\ell^2(\mathbb{Z}^+) with inner product f,g2(Z+)f, g \in \ell^2(\mathbb{Z}^+), then

<f,g>=n=1f(n)g(n).<{f},{g}> = \sum_{n = 1}^{\infty} f(n)\overline{g(n)}.

and consider {en}nZ+\{e_n\}_{n \in \mathbb{Z}^+}, where en(m)=δn,me_n(m) = \delta_{n,m}. Which is an orthonormal basis of 2(Z+)\ell^2(\mathbb{Z}^+). Hence, dim2(Z+)=0\dim \ell^2(\mathbb{Z}^+) = \aleph_0.

Theorem. In the Hilbert space L2([0,1])L^2([0,1]), the set {e2πinx}nZ\{e^{2\pi i n x}\}_{n \in \mathbb{Z}} is orthonormal since

01e2πi(mn)xdx={1,m=n0,mn\begin{aligned} \int_{0}^{1} e^{2\pi i (m-n) x}dx =\left\{\begin{matrix} 1,& m=n\\ 0,& m\neq n \end{matrix}\right. \end{aligned}

By Stone-Weierstrass theorem,Span{e2πinx}nZ=C([0,1])\overline{\textbf{Span}}^{\|{\cdot}{}\|_{\infty}}\{e^{2\pi i n x}\}_{n \in \mathbb{Z}} = C([0,1]).
Hence,

Span2{e2πinx}nZ=C([0,1])2=L2([0,1]).\overline{\textbf{Span}}^{\|{\cdot}{}\|_{2}}\{e^{2\pi i n x}\}_{n \in \mathbb{Z}} = \overline{C([0,1])}^{\|{\cdot}{}\|_2} = L^2([0,1]).

{e2πinx}nZ\{e^{2\pi i n x}\}_{n \in \mathbb{Z}} is an orthonormal of L2([0,1])L^2([0,1]), and dimL2([0,1])=0\dim L^2([0,1]) = \aleph_0.