Definition 1:
Let X is a fixed set(or a Basic Space), and denote E:={E:E⊂X}. Call E is a set class on X.
Definition 2:
Let E is a set class on X, and if its elements satisfy:
∀E1,E2∈E, have E1∪E2∈E and E1−E2∈E, then we called E is a Ring on X and denote: R.
In particular, if we have X∈R, we called R is a σ−Ring on X.
Definition 3:
Let E is a set class on X, and define the mapping from E to X:
μ:E→R
then, called μ is set function on E.
Definition 4:
Let R is a Ring on X, and we define the set function μ:R→R, and satisfied:
i>. μ(∅)=0
ii>. (Non-negative) ∀E∈R, has μ(E)≥0
iii>.(Additivity) En∈R, n=1,2,..., and ∀Ei∩Ej=∅(i=j), have:
μ(n=1⋃∞En)=n=1∑∞μ(En)
then, we called μ is a measure on R.
Theorem
If R is a Ring on X, and μ is a measure on R, then it has:
i>. (Limited additivity) If E1,E2,...,En∈R, and ∀Ei∩Ej=∅(i=j),have:
μ(i=1⋃nEn)=i=1∑nμ(En)
ii>. (Monotonicity) If E1,E2∈R, and E1⊂E2, then
μ(E1)≤μ(E2)
iii>. (Reducibility) If E1,E2∈R, E1⊂E2, and μ(E1)≤∞, then
μ(E2−E1)=μ(E2)−μ(E1)
iv>. (Secondary additivity) If En,E∈R, n=1,2,..., and E⊂⋃n=1∞En, then
μ(E)≤n=1∑∞μ(En)
v>. If En∈R, , E1⊂E2⊂⋅⋅⋅, and ⋃n=1∞En∈R, then
μ(n=1⋃∞En)=n→∞limμ(En)
vi>. If En∈R, , E1⊃E2⊃⋅⋅⋅, ⋂n=1∞En∈R, and ∃En such that μ(Em)<∞, then
μ(n=1⋂∞En)=n→∞limμ(En)
In addition, if R is a σ-Ring, we have:
vii>. If En∈R, , then
μ(limninfEn)≤limninfμ(En)
viii>. If En∈R, , and ∃k∈N, such that ⋃n=k∞En<∞, then
μ(limnsupEn)≥limnsupμ(En)
ix>. If En∈R, , limEn exists and ∃k∈N such that ⋃n=k∞En<∞, then
μ(n→∞limEn)=n→∞limμ(En)
x. If En∈R, , and ∃k∈N such that ∑n=k∞μ(En)<∞, then
μ(limnsupEn)=0