Measure on the Ring

Definition 1:

Let XX is a fixed set(or a Basic Space), and denote E:={E:EX}\mathcal{E} := \left\{ E:E\subset X \right\}. Call E\mathcal{E} is a set class on XX.

Definition 2:

Let E\mathcal{E} is a set class on XX, and if its elements satisfy:

E1,E2E\forall E_1,E_2 \in \mathcal{E}, have E1E2EE_1 \cup E_2 \in \mathcal{E} and E1E2EE_1-E_2 \in \mathcal{E}, then we called E\mathcal{E} is a Ring on XX and denote: R\mathcal{R}.

In particular, if we have XRX \in \mathcal{R}, we called R\mathcal{R} is a σ\sigma-Ring on XX.

Definition 3:

Let E\mathcal{E} is a set class on XX, and define the mapping from E\mathcal{E} to XX:

μ:ER\mu : \mathcal{E}\to \mathbb{R}

then, called μ\mu is set function on E\mathcal{E}.

Definition 4:

Let R\mathcal{R} is a Ring on XX, and we define the set function μ:RR\mu : \mathcal{R}\to \mathbb{R}, and satisfied:

i>. μ()=0\mu (\varnothing) = 0

ii>. (Non-negative) ER\forall E \in \mathcal{R}, has μ(E)0\mu (E) \ge 0

iii>.(Additivity) EnRE_n \in \mathcal{R}, n=1,2,...n=1,2,..., and EiEj=(ij)\forall E_i \cap E_j=\varnothing (i \ne j), have:

μ(n=1En)=n=1μ(En)\mu \left(\bigcup_{n=1}^{\infty}E_n \right) =\sum_{n=1}^{\infty}\mu(E_n)

then, we called μ\mu is a measure on R\mathcal{R}.

Theorem

If R\mathcal{R} is a Ring on XX, and μ\mu is a measure on R\mathcal{R}, then it has:

  i>. (Limited additivity) If E1,E2,...,EnRE_1,E_2,...,E_n \in \mathcal{R}, and EiEj=(ij)\forall E_i \cap E_j=\varnothing (i \ne j),have:

μ(i=1nEn)=i=1nμ(En)\mu \left(\bigcup_{i=1}^{n}E_n \right) =\sum_{i=1}^{n}\mu(E_n)

  ii>. (Monotonicity) If E1,E2RE_1,E_2 \in \mathcal{R}, and E1E2E_1\subset E_2, then

μ(E1)μ(E2)\mu(E_1) \le \mu(E_2)

  iii>. (Reducibility) If E1,E2RE_1,E_2 \in \mathcal{R}, E1E2E_1\subset E_2, and μ(E1)\mu(E_1) \le \infty, then

μ(E2E1)=μ(E2)μ(E1)\mu(E_2-E_1)=\mu(E_2)-\mu(E_1)

  iv>. (Secondary additivity) If En,ERE_n,E \in \mathcal{R}, n=1,2,...n=1,2,..., and En=1EnE\subset \bigcup_{n=1}^{\infty}E_n, then

μ(E)n=1μ(En)\mu(E) \le \sum_{n=1}^{\infty}\mu(E_n)

  v>. If EnRE_n \in \mathcal{R}, , E1E2,E_1\subset E_2\subset \cdot \cdot \cdot , and n=1EnR\bigcup_{n=1}^{\infty}E_n \in \mathcal{R}, then

μ(n=1En)=limnμ(En)\mu \left(\bigcup_{n=1}^{\infty}E_n \right) =\lim_{n\to \infty}\mu(E_n)

  vi>. If EnRE_n \in \mathcal{R}, , E1E2,E_1\supset E_2\supset \cdot \cdot \cdot , n=1EnR\bigcap_{n=1}^{\infty}E_n \in \mathcal{R}, and En\exists E_n such that μ(Em)<\mu(E_m) < \infty, then

μ(n=1En)=limnμ(En)\mu \left(\bigcap_{n=1}^{\infty}E_n \right) =\lim_{n\to \infty}\mu(E_n)

In addition, if R\mathcal{R} is a σ-Ring\sigma \text{-Ring}, we have:

  vii>. If EnRE_n \in \mathcal{R}, , then

μ(liminfnEn)liminfnμ(En)\mu\left(\lim\inf_{n}E_n\right) \le \lim\inf_{n}\mu(E_n)

  viii>. If EnRE_n \in \mathcal{R}, , and kN\exists k \in \mathbb{N}, such that n=kEn<\bigcup_{n=k}^{\infty}E_n < \infty, then

μ(limsupnEn)limsupnμ(En)\mu\left(\lim\sup_{n}E_n\right) \ge \lim\sup_{n}\mu(E_n)

  ix>. If EnRE_n \in \mathcal{R}, , limEn\lim E_n exists and kN\exists k \in \mathbb{N} such that n=kEn<\bigcup_{n=k}^{\infty}E_n < \infty, then

μ(limnEn)=limnμ(En)\mu\left(\lim_{n\to \infty}E_n\right) = \lim_{n\to \infty}\mu(E_n)

  x. If EnRE_n \in \mathcal{R}, , and kN\exists k \in \mathbb{N} such that n=kμ(En)<\sum_{n=k}^{\infty}\mu(E_n) < \infty, then

μ(limsupnEn)=0\mu\left(\lim\sup_{n}E_n\right) = 0